Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system

نویسندگان

  • Emmanuel Audusse
  • François Bouchut
  • Marie-Odile Bristeau
  • Jacques Sainte-Marie
چکیده

A lot of well-balanced schemes have been proposed for discretizing the classical Saint-Venant system for shallow water flows with non-flat bottom. Among them, the hydrostatic reconstruction scheme is a simple and efficient one. It involves the knowledge of an arbitrary solver for the homogeneous problem (for example Godunov, Roe, kinetic. . . ). If this solver is entropy satisfying, then the hydrostatic reconstruction scheme satisfies a semi-discrete entropy inequality. In this paper we prove that, when used with the classical kinetic solver, the hydrostatic reconstruction scheme also satisfies a fully discrete entropy inequality, but with an error term. This error term tends to zero strongly when the space step tends to zero, including solutions with shocks. We prove also that the hydrostatic reconstruction scheme does not satisfy the entropy inequality without error term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows

We consider the Saint-Venant system for shallow water flows with non-flat bottom. In the past years, efficient well-balanced methods have been proposed in order to well resolve solutions close to steady states at rest. Here we describe a strategy based on a local subsonic steady-state reconstruction that allows to derive a subsonic-well-balanced scheme, preserving exactly all the subsonic stead...

متن کامل

A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows

We consider the Saint-Venant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when completed with friction. Numerical approximate solutions to this system may be generated using conservative fi...

متن کامل

Finite-Volume Solvers for a Multilayer Saint-Venant System

We consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Sai...

متن کامل

Central-Upwind Scheme for a Non-hydrostatic Saint-Venant System

We develop a second-order central-upwind scheme for the non-hydrostatic version of the Saint-Venant system recently proposed in [M.-O. Bristeau and J. Sainte-Marie, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 733–759]. The designed scheme is both well-balanced (capable of exactly preserving the “lake-at-rest” steady state) and positivity preserving. We then use the central-upwind scheme ...

متن کامل

Numerical Study of Staggered Scheme for Viscous Saint-Venant Equations

This paper describes a numerical scheme for approximate the viscous Saint-Venant equations. This scheme is called staggered grid scheme which is a robust, simple and strightforward scheme for viscous SaintVenant equations. Some numerical simulations have been elaborated to validate the accuracy of the scheme, such as the calculation of the convergence rate L1-norm error of the scheme, the compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2016